15.9. 用于预训练BERT的数据集¶ 在 SageMaker Studio Lab 中打开 Notebook
为了预训练 :numref:`sec_bert` 中实现的BERT模型,我们需要以理想的格式生成数据集,以方便两个预训练任务:遮蔽语言模型和下一句预测。一方面,原始BERT模型是在两个庞大的语料库BookCorpus和英文维基百科(请参见 :numref:`subsec_bert-pretraining-tasks`)的串联上进行预训练的,这使得本书的大多数读者很难运行。另一方面,现成的预训练BERT模型可能不适合来自特定领域(如医学)的应用。因此,在定制的数据集上预训练BERT变得越来越流行。为了方便演示BERT预训练,我们使用一个较小的语料库WikiText-2 :cite:`Merity.Xiong.Bradbury.ea.2016`。
与 :numref:`sec_word2vec-data` 中用于预训练word2vec的PTB数据集相比,WikiText-2数据集(i)保留了原始标点符号,使其适合下一句预测;(ii)保留了原始大小写和数字;(iii)大小是其两倍以上。
import os
import random
import torch
from d2l import torch as d2l
import os
import random
from mxnet import gluon, np, npx
from d2l import mxnet as d2l
npx.set_np()
在WikiText-2数据集中,每行代表一个段落,其中任何标点符号与其前面的词元之间都插入了空格。保留至少有两个句子的段落。为了拆分句子,为简单起见,我们仅使用句点作为分隔符。我们把对更复杂的句子拆分技术的讨论留在本节末尾的练习中。
#@save
d2l.DATA_HUB['wikitext-2'] = (
'https://s3.amazonaws.com/research.metamind.io/wikitext/'
'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')
#@save
def _read_wiki(data_dir):
file_name = os.path.join(data_dir, 'wiki.train.tokens')
with open(file_name, 'r') as f:
lines = f.readlines()
# Uppercase letters are converted to lowercase ones
paragraphs = [line.strip().lower().split(' . ')
for line in lines if len(line.split(' . ')) >= 2]
random.shuffle(paragraphs)
return paragraphs
#@save
d2l.DATA_HUB['wikitext-2'] = (
'https://s3.amazonaws.com/research.metamind.io/wikitext/'
'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')
#@save
def _read_wiki(data_dir):
file_name = os.path.join(data_dir, 'wiki.train.tokens')
with open(file_name, 'r') as f:
lines = f.readlines()
# Uppercase letters are converted to lowercase ones
paragraphs = [line.strip().lower().split(' . ')
for line in lines if len(line.split(' . ')) >= 2]
random.shuffle(paragraphs)
return paragraphs
15.9.1. 为预训练任务定义辅助函数¶
在下文中,我们首先为两个BERT预训练任务实现辅助函数:下一句预测和遮蔽语言模型。在将原始文本语料库转换为预训练BERT的理想格式的数据集时,稍后将调用这些辅助函数。
15.9.1.1. 生成下一句预测任务¶
根据 :numref:`subsec_nsp` 的描述,`_get_next_sentence` 函数为二元分类任务生成一个训练样本。
#@save
def _get_next_sentence(sentence, next_sentence, paragraphs):
if random.random() < 0.5:
is_next = True
else:
# `paragraphs` is a list of lists of lists
next_sentence = random.choice(random.choice(paragraphs))
is_next = False
return sentence, next_sentence, is_next
#@save
def _get_next_sentence(sentence, next_sentence, paragraphs):
if random.random() < 0.5:
is_next = True
else:
# `paragraphs` is a list of lists of lists
next_sentence = random.choice(random.choice(paragraphs))
is_next = False
return sentence, next_sentence, is_next
以下函数通过调用 `_get_next_sentence` 函数从输入 `paragraph` 中生成用于下一句预测的训练样本。这里 `paragraph` 是一个句子列表,其中每个句子都是一个词元列表。参数 `max_len` 指定了预训练期间BERT输入序列的最大长度。
#@save
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):
nsp_data_from_paragraph = []
for i in range(len(paragraph) - 1):
tokens_a, tokens_b, is_next = _get_next_sentence(
paragraph[i], paragraph[i + 1], paragraphs)
# Consider 1 '<cls>' token and 2 '<sep>' tokens
if len(tokens_a) + len(tokens_b) + 3 > max_len:
continue
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
nsp_data_from_paragraph.append((tokens, segments, is_next))
return nsp_data_from_paragraph
#@save
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):
nsp_data_from_paragraph = []
for i in range(len(paragraph) - 1):
tokens_a, tokens_b, is_next = _get_next_sentence(
paragraph[i], paragraph[i + 1], paragraphs)
# Consider 1 '<cls>' token and 2 '<sep>' tokens
if len(tokens_a) + len(tokens_b) + 3 > max_len:
continue
tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)
nsp_data_from_paragraph.append((tokens, segments, is_next))
return nsp_data_from_paragraph
15.9.1.2. 生成遮蔽语言模型任务¶
为了从BERT输入序列中为遮蔽语言模型任务生成训练样本,我们定义了以下 `_replace_mlm_tokens` 函数。在其输入中,`tokens` 是表示BERT输入序列的词元列表,`candidate_pred_positions` 是BERT输入序列中除特殊词元外的词元索引列表(特殊词元不在遮蔽语言模型任务中预测),`num_mlm_preds` 表示预测的数量(回想一下,有15%的随机词元被预测)。遵循 :numref:`subsec-mlm` 中遮蔽语言模型任务的定义,在每个预测位置,输入可能被一个特殊的“
#@save
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,
vocab):
# For the input of a masked language model, make a new copy of tokens and
# replace some of them by '<mask>' or random tokens
mlm_input_tokens = [token for token in tokens]
pred_positions_and_labels = []
# Shuffle for getting 15% random tokens for prediction in the masked
# language modeling task
random.shuffle(candidate_pred_positions)
for mlm_pred_position in candidate_pred_positions:
if len(pred_positions_and_labels) >= num_mlm_preds:
break
masked_token = None
# 80% of the time: replace the word with the '<mask>' token
if random.random() < 0.8:
masked_token = '<mask>'
else:
# 10% of the time: keep the word unchanged
if random.random() < 0.5:
masked_token = tokens[mlm_pred_position]
# 10% of the time: replace the word with a random word
else:
masked_token = random.choice(vocab.idx_to_token)
mlm_input_tokens[mlm_pred_position] = masked_token
pred_positions_and_labels.append(
(mlm_pred_position, tokens[mlm_pred_position]))
return mlm_input_tokens, pred_positions_and_labels
#@save
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,
vocab):
# For the input of a masked language model, make a new copy of tokens and
# replace some of them by '<mask>' or random tokens
mlm_input_tokens = [token for token in tokens]
pred_positions_and_labels = []
# Shuffle for getting 15% random tokens for prediction in the masked
# language modeling task
random.shuffle(candidate_pred_positions)
for mlm_pred_position in candidate_pred_positions:
if len(pred_positions_and_labels) >= num_mlm_preds:
break
masked_token = None
# 80% of the time: replace the word with the '<mask>' token
if random.random() < 0.8:
masked_token = '<mask>'
else:
# 10% of the time: keep the word unchanged
if random.random() < 0.5:
masked_token = tokens[mlm_pred_position]
# 10% of the time: replace the word with a random word
else:
masked_token = random.choice(vocab.idx_to_token)
mlm_input_tokens[mlm_pred_position] = masked_token
pred_positions_and_labels.append(
(mlm_pred_position, tokens[mlm_pred_position]))
return mlm_input_tokens, pred_positions_and_labels
通过调用上述 `_replace_mlm_tokens` 函数,以下函数以BERT输入序列(`tokens`)作为输入,并返回输入词元的索引(在 :numref:`subsec-mlm` 中描述的可能词元替换之后)、进行预测的词元索引以及这些预测的标签索引。
#@save
def _get_mlm_data_from_tokens(tokens, vocab):
candidate_pred_positions = []
# `tokens` is a list of strings
for i, token in enumerate(tokens):
# Special tokens are not predicted in the masked language modeling
# task
if token in ['<cls>', '<sep>']:
continue
candidate_pred_positions.append(i)
# 15% of random tokens are predicted in the masked language modeling task
num_mlm_preds = max(1, round(len(tokens) * 0.15))
mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(
tokens, candidate_pred_positions, num_mlm_preds, vocab)
pred_positions_and_labels = sorted(pred_positions_and_labels,
key=lambda x: x[0])
pred_positions = [v[0] for v in pred_positions_and_labels]
mlm_pred_labels = [v[1] for v in pred_positions_and_labels]
return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]
#@save
def _get_mlm_data_from_tokens(tokens, vocab):
candidate_pred_positions = []
# `tokens` is a list of strings
for i, token in enumerate(tokens):
# Special tokens are not predicted in the masked language modeling
# task
if token in ['<cls>', '<sep>']:
continue
candidate_pred_positions.append(i)
# 15% of random tokens are predicted in the masked language modeling task
num_mlm_preds = max(1, round(len(tokens) * 0.15))
mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(
tokens, candidate_pred_positions, num_mlm_preds, vocab)
pred_positions_and_labels = sorted(pred_positions_and_labels,
key=lambda x: x[0])
pred_positions = [v[0] for v in pred_positions_and_labels]
mlm_pred_labels = [v[1] for v in pred_positions_and_labels]
return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]
15.9.2. 将文本转换为预训练数据集¶
现在我们几乎准备好为预训练BERT定制一个 `Dataset` 类。在此之前,我们仍然需要定义一个辅助函数 `_pad_bert_inputs` 来将特殊的“
#@save
def _pad_bert_inputs(examples, max_len, vocab):
max_num_mlm_preds = round(max_len * 0.15)
all_token_ids, all_segments, valid_lens, = [], [], []
all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
nsp_labels = []
for (token_ids, pred_positions, mlm_pred_label_ids, segments,
is_next) in examples:
all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * (
max_len - len(token_ids)), dtype=torch.long))
all_segments.append(torch.tensor(segments + [0] * (
max_len - len(segments)), dtype=torch.long))
# `valid_lens` excludes count of '<pad>' tokens
valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32))
all_pred_positions.append(torch.tensor(pred_positions + [0] * (
max_num_mlm_preds - len(pred_positions)), dtype=torch.long))
# Predictions of padded tokens will be filtered out in the loss via
# multiplication of 0 weights
all_mlm_weights.append(
torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * (
max_num_mlm_preds - len(pred_positions)),
dtype=torch.float32))
all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * (
max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long))
nsp_labels.append(torch.tensor(is_next, dtype=torch.long))
return (all_token_ids, all_segments, valid_lens, all_pred_positions,
all_mlm_weights, all_mlm_labels, nsp_labels)
#@save
def _pad_bert_inputs(examples, max_len, vocab):
max_num_mlm_preds = round(max_len * 0.15)
all_token_ids, all_segments, valid_lens, = [], [], []
all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []
nsp_labels = []
for (token_ids, pred_positions, mlm_pred_label_ids, segments,
is_next) in examples:
all_token_ids.append(np.array(token_ids + [vocab['<pad>']] * (
max_len - len(token_ids)), dtype='int32'))
all_segments.append(np.array(segments + [0] * (
max_len - len(segments)), dtype='int32'))
# `valid_lens` excludes count of '<pad>' tokens
valid_lens.append(np.array(len(token_ids), dtype='float32'))
all_pred_positions.append(np.array(pred_positions + [0] * (
max_num_mlm_preds - len(pred_positions)), dtype='int32'))
# Predictions of padded tokens will be filtered out in the loss via
# multiplication of 0 weights
all_mlm_weights.append(
np.array([1.0] * len(mlm_pred_label_ids) + [0.0] * (
max_num_mlm_preds - len(pred_positions)), dtype='float32'))
all_mlm_labels.append(np.array(mlm_pred_label_ids + [0] * (
max_num_mlm_preds - len(mlm_pred_label_ids)), dtype='int32'))
nsp_labels.append(np.array(is_next))
return (all_token_ids, all_segments, valid_lens, all_pred_positions,
all_mlm_weights, all_mlm_labels, nsp_labels)
将用于生成两个预训练任务的训练样本的辅助函数和用于填充输入的辅助函数放在一起,我们将以下 `_WikiTextDataset` 类定制为用于预训练BERT的WikiText-2数据集。通过实现 `__getitem__` 函数,我们可以任意访问从WikiText-2语料库中的一对句子生成的预训练(遮蔽语言模型和下一句预测)样本。
原始BERT模型使用词汇量为30000的WordPiece嵌入 :cite:`Wu.Schuster.Chen.ea.2016`。WordPiece的分词方法是对 :numref:`subsec-byte-pair-encoding` 中原始字节对编码算法的轻微修改。为简单起见,我们使用 `d2l.tokenize` 函数进行分词。出现次数少于五次的罕见词元被过滤掉。
#@save
class _WikiTextDataset(torch.utils.data.Dataset):
def __init__(self, paragraphs, max_len):
# Input `paragraphs[i]` is a list of sentence strings representing a
# paragraph; while output `paragraphs[i]` is a list of sentences
# representing a paragraph, where each sentence is a list of tokens
paragraphs = [d2l.tokenize(
paragraph, token='word') for paragraph in paragraphs]
sentences = [sentence for paragraph in paragraphs
for sentence in paragraph]
self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
'<pad>', '<mask>', '<cls>', '<sep>'])
# Get data for the next sentence prediction task
examples = []
for paragraph in paragraphs:
examples.extend(_get_nsp_data_from_paragraph(
paragraph, paragraphs, self.vocab, max_len))
# Get data for the masked language model task
examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
+ (segments, is_next))
for tokens, segments, is_next in examples]
# Pad inputs
(self.all_token_ids, self.all_segments, self.valid_lens,
self.all_pred_positions, self.all_mlm_weights,
self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
examples, max_len, self.vocab)
def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],
self.valid_lens[idx], self.all_pred_positions[idx],
self.all_mlm_weights[idx], self.all_mlm_labels[idx],
self.nsp_labels[idx])
def __len__(self):
return len(self.all_token_ids)
#@save
class _WikiTextDataset(gluon.data.Dataset):
def __init__(self, paragraphs, max_len):
# Input `paragraphs[i]` is a list of sentence strings representing a
# paragraph; while output `paragraphs[i]` is a list of sentences
# representing a paragraph, where each sentence is a list of tokens
paragraphs = [d2l.tokenize(
paragraph, token='word') for paragraph in paragraphs]
sentences = [sentence for paragraph in paragraphs
for sentence in paragraph]
self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[
'<pad>', '<mask>', '<cls>', '<sep>'])
# Get data for the next sentence prediction task
examples = []
for paragraph in paragraphs:
examples.extend(_get_nsp_data_from_paragraph(
paragraph, paragraphs, self.vocab, max_len))
# Get data for the masked language model task
examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)
+ (segments, is_next))
for tokens, segments, is_next in examples]
# Pad inputs
(self.all_token_ids, self.all_segments, self.valid_lens,
self.all_pred_positions, self.all_mlm_weights,
self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(
examples, max_len, self.vocab)
def __getitem__(self, idx):
return (self.all_token_ids[idx], self.all_segments[idx],
self.valid_lens[idx], self.all_pred_positions[idx],
self.all_mlm_weights[idx], self.all_mlm_labels[idx],
self.nsp_labels[idx])
def __len__(self):
return len(self.all_token_ids)
通过使用 `_read_wiki` 函数和 `_WikiTextDataset` 类,我们定义了以下 `load_data_wiki` 来下载和从WikiText-2数据集中生成预训练样本。
#@save
def load_data_wiki(batch_size, max_len):
"""Load the WikiText-2 dataset."""
num_workers = d2l.get_dataloader_workers()
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = torch.utils.data.DataLoader(train_set, batch_size,
shuffle=True, num_workers=num_workers)
return train_iter, train_set.vocab
#@save
def load_data_wiki(batch_size, max_len):
"""Load the WikiText-2 dataset."""
num_workers = d2l.get_dataloader_workers()
data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')
paragraphs = _read_wiki(data_dir)
train_set = _WikiTextDataset(paragraphs, max_len)
train_iter = gluon.data.DataLoader(train_set, batch_size, shuffle=True,
num_workers=num_workers)
return train_iter, train_set.vocab
将批量大小设置为512,BERT输入序列的最大长度设置为64,我们打印出一个小批量的BERT预训练样本的形状。请注意,在每个BERT输入序列中,有\(10\)(\(64 \times 0.15\))个位置被预测用于遮蔽语言模型任务。
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)
for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,
mlm_Y, nsp_y) in train_iter:
print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,
pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,
nsp_y.shape)
break
Downloading ../data/wikitext-2-v1.zip from https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip...
torch.Size([512, 64]) torch.Size([512, 64]) torch.Size([512]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512, 10]) torch.Size([512])
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)
for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,
mlm_Y, nsp_y) in train_iter:
print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,
pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,
nsp_y.shape)
break
Downloading ../data/wikitext-2-v1.zip from https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip...
[21:52:02] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
(512, 64) (512, 64) (512,) (512, 10) (512, 10) (512, 10) (512,)
最后,让我们看一下词汇表的大小。即使在过滤掉不常见的词元之后,它仍然比PTB数据集的词汇表大两倍以上。
len(vocab)
20256
len(vocab)
20256
15.9.3. 小结¶
与PTB数据集相比,WikiText-2数据集保留了原始的标点符号、大小写和数字,并且大小是其两倍以上。
我们可以任意访问从WikiText-2语料库中的一对句子生成的预训练(遮蔽语言模型和下一句预测)样本。
15.9.4. 练习¶
为简单起见,句号被用作拆分句子的唯一分隔符。尝试其他句子拆分技术,如spaCy和NLTK。以NLTK为例。您需要先安装NLTK:`pip install nltk`。在代码中,首先 `import nltk`。然后,下载Punkt句子分词器:`nltk.download('punkt')`。要拆分像 `sentences = 'This is great ! Why not ?'` 这样的句子,调用 `nltk.tokenize.sent_tokenize(sentences)` 将返回一个包含两个句子字符串的列表:`['This is great !', 'Why not ?']`。
如果我们不过滤掉任何不常见的词元,词汇表的大小是多少?